

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

ИНЖЕНЕРНЫЙ ИНСТИТУТ

ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

Методические указания для лабораторных работ

Новосибирск 2022

Кафедра техносферной безопасности и электротехнологий

Составитель: канд. тех. наук, доцент И.С. Тырышкин

Рецензент: канд. техн. наук, доцент *А.Ю. Кузнецов*

Электроника и электротехника: метод. указания для лабораторных работ/ Новосиб. гос. аграр. ун-т. Инженер. ин-т; сост.: И.С. Тырышкин. — Новосибирск, 2022.-15 с.

Методические указания предназначены для лабораторных работ по дисциплине Электроника и электротехника. Содержат правила выполнения, оформления и защиты лабораторных работ. Предназначены для студентов очной, заочной форм обучения всех направлений подготовки Инженерного института.

Утверждены и рекомендованы к изданию методической комиссией Инженерного института (протокол № 4 от 30 ноября 2021 г.).

[©] Новосибирский государственный аграрный университет, 2022

[©] Инженерный институт, 2022

ОГЛАВЛЕНИЕ

Лабораторная работа 1 ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО ДИОДА	2
Лабораторная работа 2 ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО СТАБИЛИТРОНА	5
Лабораторная работа 3 ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК БИПО- ЛЯРНОГО ТРАНЗИСТОРА, ВКЛЮЧЕННОГО ПО СХЕМЕ С ОБ- ЩИМ ЭМИТТЕРОМ	7
Лабораторная работа 4 ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛЕВОГО ТРАНЗИСТОРА	11
СПИСОК ЛИТЕРАТУРЫ	15

ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО ДИОДА

Цель работы: Практическое исследование вольт-амперных характеристик (BAX) выпрямительного диода.

Полупроводниковым диодом называют прибор с одним электрическим переходом и двумя выводами.

В полупроводниковом диоде используется свойство р-п перехода хорошо проводить электрический ток в одном направлении и плохо пропускать его в противоположном направлении. Эти токи и соответствующие им напряжения между выводами полупроводникового диода называют прямым и обратным токами, прямым и обратным напряжениями.

В работе исследуются кремневый выпрямительный диод малой мощности КД103А. Вольт-амперные характеристики полупроводникового диода и его условное графические изображения приведены на рис.1.1 а).

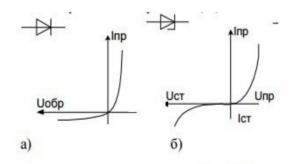
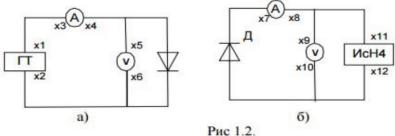



Рис. 1.1.

Выпрямительные диоды предназначены для выпрямления переменного тока.

Порядок выполнения работы

Собрать схему по схеме рис 1.2 а).

Снять прямую ветвь вольт-амперной характеристики полупроводникового диода КД103А. Данные занести в таблицу 1.1. Столбец «Выпрямительный диод», строки 1 и 2.

Собрать схему по схеме рис 1.2 б). Снять обратную ветвь вольтамперной характеристики полупроводникового диода КД103А. Данные занести в таблицу 1.1. Столбец «Выпрямительный диод», строки 3 и 4.

По результатом измерений построить BAX выпрямительного диода КД103A — прямую и обратную ветви и сравнить их с характеристиками, приведенными на рис. 1.1 а).

	THE			
an	THE	112	-	

№/ № П/П	Величи-	№ <u>№</u> опы та	Выпрями- тельный диод	Кремниевый стабилитром
1	Прямое Напряже- ние, В	1 2 3 4 5		
2	Прямой ток, мА	1 2 3 4 5		
3	Обратное напряже- ние, В	1 2 3 4 5		
4	Обрат- ный ток, А	1 2 3 4 5		

- Что такое полупроводник?
- Что такое р-п переход?
- Что такое основные и неосновные носители заряда?
- Какие электрические заряды присутствуют в р-п переходе?
- Что такое выпрямительный диод?
- Как зависит прямой ток диода от температуры?
- Как зависит обратный ток диода от температуры?

ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПОЛУПРОВОДНИКОВОГО СТАБИЛИТРОНА

Цель работы: Практическое исследование вольт-амперных характеристик (BAX) полупроводникового стабилитрона.

Полупроводниковым стабилитроном называют прибор с одним р-п переходом и двумя выводами, принцип действия которого основан на пробое при обратном включении р-п перехода.

В работе исследуется кремневый стабилитрон малой мощности КС213Б.

Условное обозначение и вольт-амперные характеристики полупроводникового стабилитрона приведены на рис. 1.1 б).

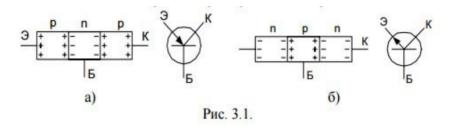
Порядок выполнения работы

Заменить в схеме рис. 1.2 а) диод КД103А стабилитроном КС213Б. Снять прямую ветвь вольт-амперной характеристики стабилитрона КС213Б. Данные занести в таблицу 1.1. Столбец «Кремниевый стабилитрон», строки 1 и 2.

Заменить в схеме рис. 1.2 б) диод КД103А стабилитроном КС213Б. Снять обратную ветвь вольт-амперной характеристики стабилитрона КС213Б. Данные занести в таблицу 1.1. Столбец «Кремниевый стабилитрон», строки 3 и 4.

По результатом измерений построить BAX стабилитрона КС213Б — прямую и обратную ветви и сравнить их с характеристиками, приведенными на рис. 1.1 б).

- Что такое р-п переход?
- Что такое выпрямительный диод?
- Что такое стабилитрон?
- Как зависит напряжение пробоя от температуры?
- Как зависит обратный ток диода от температуры?
- Что такое лавинный пробой?
- Что такое туннельный пробой?
- Что такое тепловой пробой?

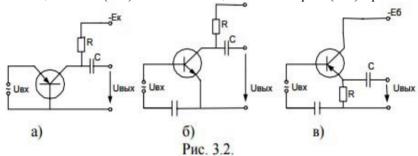

ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК БИ-ПОЛЯРНОГО ТРАНЗИСТОРА, ВКЛЮЧЕННОГО ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ

Цель работы: Практическое исследование входных и выходных вольт-амперных характеристик (BAX) биполярного транзистора, включенного по схеме с общим эмиттером.

Биполярный транзистор это полупроводниковый прибор с двумя и более p-п переходами, взаимодействующими между собой и единой кристаллической структурой.

Транзистор называется биполярным из-за того, что физические процессы в нем связаны с движением носителей зарядов двух знаков - свободных дырок и свободных электронов.

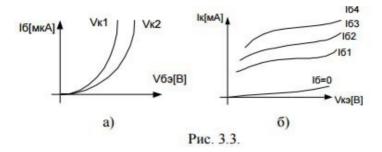
Возможны структуры с различным чередованием участков электронной и дырочной проводимости. Отсюда различаются транзисторы двух типов: p-п-р и п-р-п. Структуры и условные обозначения этих транзисторов приведены на рис 3.1 а) и б).


У биполярного транзистора минимум три вывода. В транзисторе р-п-р-типа вывод от первой р-области называется эмиттером (Э), вывод от второй р-области называется коллектором (К), вывод от побласти называется базой (Б).

Различают четыре режима работы транзистора, из них основным является активный режим работы. В активном режиме переход эмиттер—база включен в примом направлении. Переход коллектор-база включен в обратном направлении.

Токи через транзистор: ток базы Іб, ток эмиттера Іэ, ток коллектора Ік связаны соотношением: Іэ = Іб +Ік.

Связь между токами в транзисторе и приложенными напряжениями характеризуется вольт-амперными характеристиками - входными и выходными. Вид характеристик транзистора зависит от схемы его включения.


Различают три основных способа включения транзисторов в зависимости от того, какой из электродов является общим для входной и выходной цепей транзистора: схема с общим эмиттером (ОБ), схема с общей базой (ОЭ) и схема с общим коллектором (ОК) - рис. 3.2:

На рис. 3.2 a) схема с общей базой, на рис. 3.2 б) схема с общим эмиттером, на рис. 3.2 в) схема с общим коллектором, ее еще часто называют эмиттерный повторитель.

В настоящей работе исследуются ВАХ транзистора для схемы ОЭ (рис. 3.2 б.). Следует заметить — каждый транзистор характеризуется собственными ВАХ, отличными от других транзисторов.

Примерный вид ВАХ биполярного транзистора по схеме ОЭ изображен на рис. 3.3 а) входные ВАХ и рис. 3.3 б) выходные:

На рис. 3.3 а) - зависимость между током и напряжением во входной цепи транзистора I6=f1(V69) при фиксированных значениях напряжения между коллектором и эмиттером Vk9=konst. На рис. 3.3 б) - зависимость тока коллектора от напряжения между коллектором и эмиттером Ik=f2 (Vke) при фиксированных значениях тока базы I6=konst.

Таким образом, электрическое состояние транзистора, включенного по схеме с общим эмиттером, характеризуется четырьмя величинами: Іб, Vбэ, Ir. Vкэ.

Порядок выполнения работы

Собрать схему рис. 3.5.

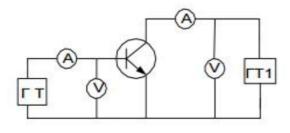


Рис. 3.5.

Снять входную характеристику транзистора I6=f(V6) при Vкэ=0 В. Данные занести в таблицу 3.1:

			Таб	лица 3.1.
I ₆ , MKA				
V_{53} ,B				

Снять входную характеристику транзистора I6=f(V6) при Vкэ=5 В. Данные занести в такую же таблицу 3.1.

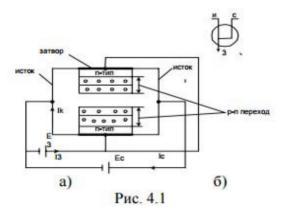
Снять семейство выходных характеристик транзистора $I\kappa = f(V\kappa \Rightarrow)$ при пяти разных значениях тока базы Iб. Данные занести в таблицу 3.2:

Таблица 3.2

№ вари-		111		Ном	ер опы	га		
антв	No	1	2	3	4	5	6	7
1	I _K , MA				6			I ₆ =0
	V_{κ_3} , B							
2	I_{κ} , MA		77					I ₆ =
1475.41	V _{K3} , B							I ₆ =
3	Ik, MA							I ₆ =
	V _{K3} ,B		j.		100			I ₆ =
4	I_{κ} , MA							I ₆ =
	V _{K3} ,B							I ₆ =
5	I_{κ} , MA							I ₆ =
	V _{k3} ,B							I ₆ =

По данным таблицы 3.1. и таблицы 3.2. построить входные и выходные ВАХ транзистора, включенного по схеме с общим эмиттером.

- Что такое биполярный транзистор?
- Объясните принцип действия биполярного транзистора.
- Какие схемы включения биполярных транзисторов существуют?
- Что такое вольт-амперная характеристика биполярного транзистора?

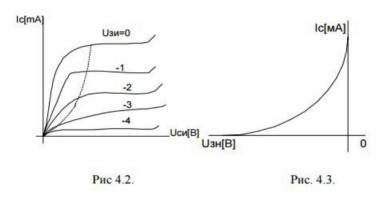

ИЗМЕРЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПО-ЛЕВОГО ТРАНЗИСТОРА

Цель работы: Практическое исследование вольт-амперных характеристик полевого транзистора.

Транзистор, принцип действия которого основан на использовании свободных носителей заряда только одного знака - электронов или дырок — называется полевым (униполярным). Транзистор называются полевым еще и потому, что по каналу протекает ток под действием сил электрического поля.

Область транзистора, через которую течет ток называется каналом. Электрод, из которого в канал входят носители заряда, называется истоком. Электрод, через который носители заряда уходят из канала называется стоком. Электрод, служащий для регулирования поперечного сечения канала, называется затвором.

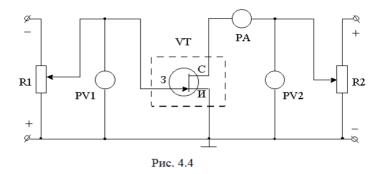
Различаются полевые транзисторы с каналом р-типа и каналом п-типа. Полевые транзисторы с управляющим р-п переходом и изолированным затвором. В настоящей лабораторной работе исследуется полевой транзистор с управляющим р-п переходом и каналом р-типа (рис.4.1):



Рассмотрим принцип его работы. Условное изображение транзистора приведено на рис. 4.1 б).

Если между истоком и стоком включен источник ЭДС Еси, то в р-канале есть ток, значение которого зависит от проводимости канала. Проводимость р-канала обратно пропорциональна его ширине.

Ширина изменяется с помощью ЭДС ЕЗ, включенной положительным полюсом к затвору, так что р-п-переход между р-каналом и п-областью, которая соединена с затвором, включен в обратном направлении. Изменяя обратное напряжение на р-п переходе, мы изменяем ширину р-п перехода и, тем самым, ширину канала. Принцип действия транзистора с каналом п-типа идентичен. Отличие в типе носителей электрического заряда, образующих ток в канала и полярностью управляющего напряжения исток-затвор.


Примерный вид BAX полевого транзистора изображен на рис. 4.2 и рис 4.3:

На рис. 4.2 изображено семейство выходных ВАХ — зависимость тока стока от напряжения между истоком и стоком при фиксированных значениях напряжения между затвором и истоком. На рис. 4.3 изображена передаточная характеристика полевого транзистора. Ее еще называют стоко-затворная характеристика. Зависимость тока стока от напряжения между затвором и истоком.

Порядок выполнения работы

Собрать схему рис. 4.4:

Снять выходные характеристики Ic=f(Vcu) полевого транзистора при заданных преподавателем значениях Изи. Данные внести в таблицу 4.1. По полученным данным построить выходные BAX полевого транзистора.

Варианты	Величины			Примечания				
		1	2	3	4	5	6	
1	V _{cu} , B		į.				44	V _{3H} =0
	Ic, MA							
2	V _{cu} , B		Ĵ	77			95	V ₃₁₁ =
100	Ic, MA		9					
3	V _{cu} , B							V _{3H} =
	Ic, MA			3				200
4	V _{cu} , B							V _{3H} =
	Ic, MA		9					
5	V _{cu} , B							V _{3H} =
	Ic, MA							

Снять передаточную характеристику Ic=f(Vзu) транзистора. Для чего установить напряжение между истоком и стоком, равное 10 в. Затем, изменяя напряжение между истоком и затвором от нуля до максимума с шагом 0,5, измерять ток стока. Данные внести в таблицу 4.2:

Таблица 4.2

Величи-	Ĵ	Примеча-					
ны	1	2	3	4	5	6	ния
V _{3H} , B							V _{cu} =
Ic, MA	à			0	100	100	- 2000

По полученным данным построить передаточную характеристику Ic=f(Vзu) исследуемого полевого транзистора.

- 1. Что такое полевой транзистор?
- 2. Почему полевой транзистор называется униполярным?
- 3. Объясните принцип действия полевого транзистора с управляющим р-п переходом.
- **4.** Что такое передаточная характеристика полевого транзистора?

СПИСОК ЛИТЕРАТУРЫ

- 1. Гальперин, М. В. Электротехника и электроника : учебник / М.В. Гальперин. 2-е изд. Москва : ФОРУМ : ИН-ФРА-М, 2019. 480 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-107681-1. Текст : электронный. URL: https://znanium.com/catalog/product/1008791
- 2. Электротехника и электроника: Учебник. В 2 томах. Том 1: Электротехника / А.Л. Марченко, Ю.Ф. Опадчий М.: НИЦ ИНФРА-М, 2015. 574 с
- 3. Тырышкин И.С. Электроника. Основы полупроводниковой электроники: учеб. пособие/ Новосиб. гос. аграр. ун-т; Инженер. ин-т; сост.: И.С. Тырышкин, Н.А. Каторгин. Новосибирск: Изд-во HГАУ, 2013. 59 с.
- 4. Научная электронная библиотека https://www.elibrary.ru/
- 5. Издательство «Лань» https://lanbook.com

Составитель: Тырышкин Игорь Сергеевич

ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

Методические указания для лабораторных работ

Печатается в авторской редакции

Подписано в печать 31 марта 2022 г. Формат $60 \times 84^{1/16}$. Объем 1,2 уч.-изд. л. Изд. №74. Заказ №51 Тираж 100 экз.

Отпечатано в мини-типографии Инженерного института НГАУ 630039, Новосибирск, ул. Никитина, 147